
Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 13-2083972

Improving Disk Performance: A Prefetching Scheme Exploiting Data
Layout and Access History
Kei Davis, CCS-7;
Xiaoning Ding,
Xiaodong Zhang, The Ohio
State University
Song Jiang, Wayne State
University

Prefetching is an important technique for improving effective hard disk performance. It attempts to
accurately predict the data to be requested and load it ahead of the arrival of application requests.
Current disk prefetch policies in major operating systems (OS) track access patterns at the level of file
abstraction, which has limitations and so cannot realize the full performance improvements achievable
by prefetching. We have designed a system, DiskSeen, that performs prefetching directly at the
level of disk layout, and in a portable way. An important design consideration is that our technique
is entirely supplementary to, and works synergistically with, any present file-level prefetch policies.
Our implementation in the Linux kernel shows that it can significantly improve the effectiveness of
prefetching, reducing execution times by 20–53% for micro-benchmarks and real applications.
Even with workloads specifically designed to expose its weaknesses DiskSeen exhibits only minor
performance loss.

Current disk prefetch policies in major OSs track access patterns
at the level of file abstraction. While this is useful for exploiting

application-level access patterns, there are two reasons why file-level
prefetching cannot realize the full performance improvements achievable
by prefetching: (1) certain prefetch opportunities can only be detected
by knowing the data layout on disk, such as the contiguous layout of file
meta-data or data from multiple files; and (2) non-sequential access of
disk data (requiring disk head movement) is much slower than sequential
access, and the penalty for mis-prefetching a “random” block (unit of
disk capacity), relative to that of a sequential block, is correspondingly

more costly. To overcome the inherent
limitations of prefetching at the logical file
level we propose to perform prefetching
directly at the level of disk layout and
in a portable way. Our technique, called
DiskSeen, is intended to be supplementary
to, and to work synergistically with, any
present file-level prefetch policies.

In essence DiskSeen is a sequence-
based, history-aware prefetch scheme
based on two observations: (1) accesses
of disk blocks in a particular order are
likely to be repeated; and (2) because
it is performed asynchronously with
application execution, if prefetching is
not so inaccurate as to interfere with
application progress, it is essentially free.

DiskSeen tracks the locations and access times of disk blocks, and based
on analysis of their temporal and spatial relationships, seeks to improve
the sequentiality of disk accesses and overall prefetching performance.
It also implements a mechanism to minimize mis-prefetching to mitigate
the corresponding performance penalty.

We leave file-level prefetching enabled; DiskSeen concurrently performs
prefetching at a lower level to mitigate the inadequacies of file-level
prefetching. DiskSeen seeks to detect sequences of block accesses based
on block disk addresses, or logical block numbers (LBN). At the same
time, it maintains block access history and uses the history information
to further improve the effectiveness of prefetching when recorded access
patterns are observed to be repeated.

There are four objectives in the design of DiskSeen: (1) Efficiency–we
ensure that prefetched blocks are in a localized disk area and are
accessed in ascending order of their LBNs for optimal disk performance;
(2) Eagerness–prefetching is initiated immediately when a prefetching
opportunity emerges; (3) Accuracy–only the blocks that are highly
likely to be requested are prefetched–significant inaccurate prefetching
automatically suppresses prefetching; and (4) Aggressiveness–
prefetching is made more aggressive if it helps with accuracy and
reduces request service times. Conversely, if it is detected to be
increasing service times (because of inaccurate predictions) it is throttled
back.

Buffer cache is divided into prefetching and caching areas according
to their roles in the scheme (see Fig. 1). A block could be prefetched
into the prefetching area based on either current or historical access
information—both are recorded in the disk block table, or as directed by

Fig. 1. A simplified diagram of the DiskSeen system.

INFORMATION
SCIENCE AND
TECHNOLOGY

www.lanl.gov/orgs/adtsc/publications.php 73

file-level prefetching. The caching area corresponds to the
traditional buffer cache and is managed by the existing OS
kernel policies except that prefetched but not-yet-requested
blocks are no longer stored in the cache. A block is read into
the caching area either from the prefetching area, if it is hit
there, or directly from disk, all in an on-demand fashion.

A central component of DiskSeen is its mechanism for
maintaining access sequence history. To describe access
history we introduce the term trail to describe a sequence
of blocks that has been accessed with a small time interval
between each consecutive pair of blocks in the sequence and
is located in a bounded region. DiskSeen maintains a history
of previously seen access sequences—trails—to provide
its predictive capability. An important point is that a trail
may be any sequence of blocks, whereas conventional disk-
level prefetching typically relies the detection of strictly
sequential access of contiguous blocks. Figure 2 depicts a
segment of the trail history data structure.

Figure 3 shows the execution times for a selection of
benchmarks (described in [1]) chosen both to showcase
DiskSeen and to specifically thwart DiskSeen’s predictive
capability. Two observations are that (1) even when
DiskSeen is wholly ineffective, it does not significantly hurt
performance; and (2) an application need not necessarily be
run more than once for the history mechanism to be useful.

For more information contact Kei Davis at
kei@lanl.gov.

[1] Jiang, S.. et al., “A
Prefetching Scheme Exploiting
both Data Layout and Access
History on Disk,” ACM Trans
Storage, to appear (2013).

Funding Acknowledgments
DOE, NNSA, Advanced Simulation and Computing Program

Fig. 2. Access trails. B1 through
B7 are consecutive contiguous
blocks in the block table. There
are four trails starting from block
B3: one current trail and three
history trails. Trail 1 (B3, B5,
B7, B6) corresponds to the on-
going continuous block accesses.

Fig. 3. Execution times of six
benchmarks. Linux 2.6.11 refers
to the stock Linux kernel.

B

